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Diffusion in a ZSM-5 zeolite crystal is modeled as a simple random walk process in a finite, two- 
dimensional network of pores. Pore blocking is investigated as a model for catalyst modifications to 
enhance shape selectivity. The effects of random blocking of pores in the bulk of the crystal, or of 
pore entrances along the crystal border, are examined quantitatively. The behavior of effective 
intracrystalline diffusivity vs percentage of pores blocked is highly dependent on the blocking 
mode. A Monte-Carlo model for diffusion and reaction in a zeolite crystal is developed to study the 
effects of intracrystalline occupancy by gaseous molecules on the degree of diffusional effects on 
the reaction. For the simple isomerization A G= B, where species A and B have equal diffusivities, 
results obtained by Monte-Carlo simulation deviate from the predictions of a corresponding contin- 
uum approach in the region of high occupancies. This is due to the “finiteness” of the crystal, 
which is incorporated in the stochastic model, but not accounted for in the continuum approach. 

INTRODUCTION 

Zeolite structure is characterized by the 
presence of regular systems of intracrystal- 
line cavities and pores, whose diameter lies 
in the range 3-10 A, i.e., is commensurable 
with ordinary molecular dimensions (1). 

A fascinating structure-related aspect of 
zeolite catalysis is molecular shape selec- 
tivity (2, 3). The subtle interplay of “con- 
figurational” diffusion and intrinsic kinetics 
in the intracrystalline pore system enables 
zeolite catalysts to “differentiate” between 
molecules or transition states involved in a 
reaction on the basis of their size and 
shape, and direct the reaction along specific 
paths. 

Alkyl aromatic transformations over the 
zeolite ZSM-5, such as toluene dispropor- 
tionation, alkylation of toluene with metha- 
nol, and xylene isomerization, in which 
mixtures of xylene isomers are produced, 
exhibit para-selectivity (4-7). Para-selec- 
tive forms of the ZSM-5 have yielded prod- 
uct mixtures containing as much as 97% 
paru-isomer to total xylenes, in large ex- 
cess of the equilibrium composition of ap- 

proximately 23% ortho-, 54% metu-, and 
24% puru-xylene (327°C) (4). A plausible 
explanation of pura-selective phenomena 
can be based on the much higher intracrys- 
talline diffusivity of paru-xylene in relation 
to the other two isomers (7, 8). Puru-xylene 
formed by the catalytic reaction can readily 
escape through the pore system, while the 
other two isomers linger in the pores and 
further isomerize to the more mobile paru- 
xylene. A quantitative diffusional theory of 
puru-selectivity was presented by Wei (8). 
Assuming a xylene isomerization rate ma- 
trix consistent with the observed equilib- 
rium composition, and a ratio of diffusivi- 
ties 1 : 1 : 1000 for 0 : m : p-xylene, 
respectively, this theory succeeds in pre- 
dicting data from paru-selective catalysts 
with very good accuracy. 

On the basis of the diffusional explana- 
tion, a necessary condition for puru-selec- 
tivity to be observed is that the situation in 
the zeolite catalyst be diffuusion limited. 

According to current views, ordinary 
(unmodified, small crystal) HZSM-5 does 
not exhibit pronounced puru-selective 
properties at low temperatures. Tremen- 
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dous enhancement of para-selectivity is ob- 
served when the catalyst undergoes certain 
modifications, such as coking (4, 9), treat- 
ment with phosphorus compounds (4, IO), 
impregnation with boron (4, 6), or magne- 
sium (6, 7) compounds, and surface coating 
with polymers (4). In addition, large crystal 
HZSM-5 displays a moderately para-selec- 
tive behavior (7). 

Catalyst modifications probably result in 
structural changes of the intracrystalline 
channel system, such as pore blocking. The 
accompanying increase in para-selectivity 
could be attributed, in the spirit of the diffu- 
sional theory, to an increase in “tortuos- 
ity” of the path which diffusing molecules 
must follow in the modified catalyst crystal 
(2). Retardation of intracrystalline trans- 
port in the presence of blockings could 
bring a reaction originally free of diffusional 
limitations into the diffusion-controlled re- 
gime. Indeed, experimental results (II) 
show a drop in xylene diffusivity upon cata- 
lyst modification. Direct experimental evi- 
dence on the relation between intracrystal- 
line diffusivity and selectivity toward 
p-xylene has been presented by Haag and 
Olson (2). 

Another factor, which would be expected 
to affect the reaction-diffusion regime in a 
zeolite crystal is occupancy of the channel 
system by sorbed reactant and product mol- 
ecules. Under ordinary operating condi- 
tions (l-10 atm, >35o”C), occupancy is 
quite low. (At 1 atm, 538°C Haag et al. (12) 
estimate the average distance between 
sorbed molecules as 400 A, i.e., greater 
than 50 molecular diameters.) It is conceiv- 
able that, under conditions of higher pres- 
sures and lower temperatures, or operation 
in the liquid phase, significant occupancies 
can be achieved. At high occupancies, in- 
terference between “sorbed” molecules, 
acting as “mobile blockings” in the zeolite 
pores, would be expected to retard intra- 
crystalline mass transport, bringing the re- 
action into a diffusion-limited regime. This 
would result in puru-selectivity, even in the 
unmodified HZSM-5 catalyst. 

The purpose of this work is to examine 
theoretically some factors that may lead to 
a diffusion-limited situation in zeolite catal- 
ysis. An elementary quantification of the 
relationship between aspects of zeolite 
structure and catalytic properties is thus at- 
tempted. The work presented is divided 
into three sections: 

(I) Theoretical examination of the effects 
of pore blocking on the effective diffusivity 
in the crystal. 

(II) Theoretical examination of the ef- 
fects of intracrystalline occupancy on the 
catalytic reaction-diffusion regime. 

(III) Modeling the reaction and diffusion 
situation in a partially blocked crystal. 

The approach used in a large part of the 
modeling work is stochastic in character. 

I. EFFECTS OF PORE BLOCKING IN 
INTRACRYSTALLINE DIFFUSIVITY 

The zeolite crystal is modeled here as a 
finite, two-dimensional rectangular grid of 
intersecting channels, as shown in Fig. 1. 
Pore segments between successive inter- 
sections, or “sites,” are considered as hav- 
ing equal length. This grid is doubtlessly a 
drastic oversimplification of the actual 
three-dimensional ZSM-5 channel network 
(3, 13, 14). Nevertheless, it retains the fea- 
ture of regularity, typical of a crystalline 
structure, as well as the feature of intercon- 
nection of pores (coordination of each site 
= 4 > 3), which is considered critical in 
determining the concentration dependence 
of diffusivity (1). 

Computing time considerations limited 
the size of the grid used in the range 11 x 11 
to 21 X 21. In reality, a plane section of a 
typical l-pm ZSM5 crystal along a (100) 
plane cuts through 10000/13.4 = 750 pores 
of the larger diameter parallel pore system. 
A similar section in a small, 0.02~pm crystal 
cuts through 200/13.4 = 15 pores. Thus, our 
grid size is more representative of small 
ZSM-5 crystals. 

Intracrystalline transport is modeled as a 
two-dimensional random walk within the 
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FIG. 1. Two-dimensional rectangular grid, used as a simple model of a zeolite crystal. 

pore system. The following assumptions 
are made: 

(A.Z) Diffusion of a molecule is consid- 
ered as a succession of discrete “steps,” or 
jumps, from intersection to intersection. 
Only single steps, of length f, are consid- 
ered. (In the real lattice, I would be of the 
order 10 A.) 

(A.2) In the absence of blocking or occu- 
pancy effects, the time interval between 
successive steps of a molecular species j is 
considered as constant and equal to rj. 

(A.3 In the absence of blocking or occu- 
pancy effects, a molecule will move to one 
of the 4 adjacent sites with equal probability 
(a> at each step. 

(A.4) Surface diffusion, considered to be 
important in zeolite catalysis, is accounted 
for, in an elementary way, by allowing lat- 

eral movement of molecules from site to 
site along the grid border. 

The straight channels of 5.4 x 5.6 L% 
should give faster diffusion than the sinu- 
soidal channels of 5.1 x 5.4 A. The diffu- 
sion rate should also depend on the size of 
the diffusing molecule, and the interaction 
with the crystal structure. In this paper, we 
assume that the diffusion rates in the two 
sets of channels are equal. The time inter- 
val T is related to the diffusion coefficient D 
and length 1 by the Brownian motion for- 
mula l2 = 407. Since the diffusion coeffi- 
cients in ZSM-5 at 315°C are lo-’ cm2/sec 
for benzene and p-xylene, lo-r0 cm2/sec for 
o-xylene, and lo-l2 cm2/sec for 1,3,5-tri- 
methylbenzene (15), the corresponding 
time intervals are 7 = 5 X lo-*, 5 X 10-j) 
and 5 x 10m3 set, respectively. 
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Additional assumptions, introduced in 
the investigation of pore blocking and occu- 
pancy effects, are described in the follow- 
ing. 

Our simple random walk approach is 
comparable to the “jump” models that 
have been used in the literature to describe 
diffusion in the “cagelike” lattices of sor- 
bent zeolites, such as zeolite A (16-18). In 
particular, assumption A.3 implies that a 
diffusing molecule loses all memory of its 
direction at each step. In a system of inter- 
connected channels, of diameter approxi- 
mately equal to that of diffusing molecules, 
this could be a result of the force field expe- 
rienced by the molecules at channel inter- 
sections, i.e., pore intersections are implic- 
itly assumed to be sorption sites of equal 
strength. The idea that sorptive and cata- 
lytic activity of the ZSM-5 resides at pore 
intersections is common in the literature, 
and is in accordance with the fact that there 
is roughly a 1 to 1 correspondence between 
Al atoms in the lattice and pore intersec- 
tions (3, 19). 

The objective of our “pore-blocking” 
computer experiments is to determine a 
quantitative relation between effective dif- 
fusivity and extent of blocking. Two block- 
ing modes are examined: 

(a) Random blocking of pores in the inte- 
rior, or “bulk” of the catalyst crystal. Bulk 
blocking is an appropriate model for modifi- 
cations in which the species reacting to 
form the blockings is small enough, so that 
it can readily penetrate the crystal and 
cause structural changes in its entire mass. 
Thus, it may be suitable for describing mod- 
ifications by Mg or B compounds. 

(b) Random blocking of pore entrances 
along the crystal border. This blocking 
model is appropriate for modifications in 
which the species reacting to form the 
blockings is bulky, so that it penetrates the 
grid very slowly, or not at all, i.e., the mod- 
ification reaction is severely diffusion lim- 
ited. According to published experimental 
works, this condition seems to be satisfied 
in many cases of ZSM-5 modification by 

treatment with phosphorus compounds 
(ZO), surface coating with polymers, and 
even coking (9). 

At the beginning of each random walk 
computer experiment a random blocking 
configuration, containing a predetermined 
number & of blocked pores, or pore en- 
trances, is generated. We symbolize by xb 
the fraction of total pores blocked. Once 
the grid topology is defined, the random 
walk of a single particle through it is sto- 
chastically modelled as follows: 

At time I = 0 the particle is “placed” at 
the center of the grid, i.e., the following 
spatial probability distribution is accepted: 

(-MIi5M, -NSjIN) (1) 

where Pi,?’ denotes the probability of the 
particle being at position (i,j) at the nth ran- 
dom walk step and 6 denotes the Dirac 
delta function. 

The particle is subsequently allowed to 
diffuse through the grid, the probability dis- 
tribution being updated at each step by use 
of the recursive relation: 

Pl”j”’ = pp-, * p!j-1 

+ Pfr)+I . p)j+l + Pp,,j . pK1.j 

+ Pi$,,j * pEl,j + PC”’ r,j ’ PSj* C2) 

Transition probabilities ptj, pkj, pyj, ptj, 
pfj, for moving to the right, to the left, up, 
down, or staying at the same place, respec- 
tively, are set as soon as the topology of the 
grid is defined. They satisfy the fundamen- 
tal relation: 

ptj + pkj + pyj + pyj + p,Sj = 1 

(-M-(iSM,-NrjsN). (3) 

For a totally unblocked grid, p!j = pkj = 
p?j = p?j = f and p:j = 0. 

The outside world is formally treated as 
two pairs of additional rows and columns of 
imaginary sites surrounding the crystal, 
from which there is no way back into the 
crystal: 
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R L U 
Pi,-(N+I) = Pi,(N+l) = P-(M+l),j 

= P&+l),j = 0. (4) 

The probability that the particle exits 
the grid is computed at each step. In this 
way, a functional relationship between the 
number of steps taken (n) and the probabil- 
ity of the particle being in the grid, 

pp = 2 5 pjy (5) i=-,+j j=-N 

is “experimentally” determined. 
In the case of a totally unblocked grid, 

one can show that our single particle ran- 
dom walk experiment is nothing more than 
a finite difference approximation to the 
two-dimensional continuum diffusion prob- 
lem: 

(6) 

P (- +,y,t 1 = 0 P ($J,, 1 = 0 

P (x, - $,t) = 0 P (x, $1) = 0 

P(X,Y,O) = 
1, for (x,Y> = W) 

0, everywhere else 

where L, = (2N + 2) 1, L, = (2M + 2) 1, 
t = 127. The effective diffusivity D is given 
in this case by the well-known formula 

The analytical solution to the continuum 
problem (6) is a Green’s function, given by 
Carslaw and Jaeger (20). The quantity 

is a continuum analogue of Z$, which can 
be expressed, by use of the continuum solu- 
tion, as 

Pf~!theoretical = ’ 

p (-l)kl 
i c 7T kl=l WI - 1) 

07 WI - 1Y 

. exp [ - i [2 1 n2 4(iv+ 1V 11 
* i a i: (;k;!!k21, kz 1 

07 m2 - II2 

1 exp [ - i FT 1 2 

4(M + n 11 1)2 . @) 

The latter is a theoretical relation be- 
tween Pii) and n, which involves only the 
grid size (M,N) and the dimensionless ef- 
fective diffusivity b = Dd2. An estimate of 
Lj can be obtained by applying a least- 
squares fitting procedure of the theoretical 
Eq. (8) on the experimental results (5). In 
the case of a totally unblocked grid, the 
value of D is, as would be expected, very 
close to the value 0.25 predicted by (7). If 
one assumes that intracrystalline transport 
in the presence of blockings can still be de- 
scribed by the diffusion Eq. (6), then one 
can define a dimensionless effective diffu- 
sivity, D, by applying the abovementioned 
fitting procedure to the random walk results 
in the blocked grid. The functionality 
d(&), or, equivalently, fi(xb), is a direct 
quantitative expression of the effects of 
structural modifications on intracrystalline 
transport rates. 

a. Bulk Pore Blocking 

In this blocking mode, pores to be 
blocked are chosen at random among the 
total number of 8MN - 2(M + N) internal 
and 4(M + N) surface pores of a (2M + 1) x 
(2N + 1) grid (a “pore” is defined here as 
the rectilinear segment between two adja- 
cent nodes, or intersections). Some exam- 
ples of random bulk pore blocking configu- 
rations created by our computer program in 
an 11 x 11 grid are given in Fig. 2 (lines 
denote blocked pores). There are 121 grid 
points, 180 internal pores, and 40 surface 
pores. 

In mathematical terms, “blocking” im- 
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FIG. 2. Examples of random bulk pore blocking configurations in an 11 X 11 network. 

plies a reduced transition probability for 
movement through a pore. A small value b 
-G 4 is accepted for the probability of move- 
ment of a particle from either end of a 
blocked pore to the other end. The proba- 
bility of staying at the same place is in- 
creased by an amount (t - b) at the two 
ends of a blocked pore, so that the funda- 
mental relation (3) is everywhere satisfied. 
An elementary example is given in Fig. 3, 
to clarify assumptions as to the changes in 
transition probabilities brought about by 
bulk pore blocking. The probability distri- 
bution Pi:‘, obtained from single particle 
random walk experiments, varies with the 
fraction of blocked pores (xt,), but also 
shows some dependence on the particular 
configuration of the grid, i.e., the exact lo- 

cation of the blocked pores. Thus, for each 
value of iVb, several blocking experiments 
are performed, to obtain averages and stan- 
dard deviations in fi. The latter are indi- 

(ithi) 
fl 

(isj-1) (i,jtl) 

PT j = $ -I=- 

(i,i) 

py,j = ; 

(i-4 j) 

=b ~9,~ = b 

s 1 
Pi,j = T  - 2b 

FIG. 3. Changes in transition probabilities brought 
about by bulk pore blocking. 
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cated by bars in the diagrams presented be- 
low. 

Completely blocked pores correspond to 
a value of b = 0. However, use of this value 
at high extents of blocking may result in 
configurations which “trap” the diffusing 
molecule altogether. Use of a small, but fi- 
nite value of b gives a smoother picture of 
the functionality D = @A$,). 

The dependence of dimensionless diffu- 
sivity d = 07/P on bulk pore blocking, as 
determined in a grid with M = N = 10, 
using a value of b = 0.01, is presented in 
Fig. 4 as a convex curve. There are 441 
nodes, 760 internal pores, and 80 surface 
pores. 

In the case of bulk blocking, fitting the 
theoretical curve of retention probability vs 
number of steps (8) on the random walk 
computer experiment results was very sat- 
isfactory in the whole range 0 5 xb % 1. The 
performance of fitting is shown in Fig. 5 for 
three representative cases of low, medium, 
and heavy bulk pore blocking. It can be 
concluded that the random walk of a single 
particle in a blocked grid, with bulk pores 
blocked at random, is described accurately, 

within the whole blocking range, by the dif- 
fusion Eq. (6), making use of the concept of 
an effective diffusivity. The fitting error 
reaches a maximum at -50% blocking; i.e., 
the case of a half-blocked grid, which is 
also a case of maximum heterogeneity, is 
the least satisfactorily described by the con- 
tinuum diffusion equation. 

Standard deviations in rj (see Fig. 4) also 
show a maximum at ,& = 50%. That is, the 
sensitivity of effective diffusivity to the ex- 
act topology of the grid is greatest in the 
case of a semiblocked grid. Indeed, a sym- 
metry is expected between complementary 
cases of slight blocking, and heavy blocking. 
The former resembles the case of a totally 
unblocked grid, for which it is known that 
the single particle random walk process de- 
generates into the diffusion equation. In the 
latter, the grid consists of a continuum of 
blocked pores, interrupted by some un- 
blocked pores, hence continuum theory is 
also very satisfactory. It is in the “transi- 
tion” region of maximum heterogeneity 
(around 50%) that maximum uncertainty 
lies. The question of symmetry, and devia- 
tions from it, in relation to the assumptions 

I I I I I I I I 
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FIG. 4. Effect of bulk blocking of pores on diffusivity. 
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FIG. 5. Performance of fitting single particle random walk results in a bulk blocked grid by the 
theoretical expression (8). - - 

made in this work, is further pursued in 
(21). 

The dependence of effective diffusivity 
on the extent of bulk pore blocking, shown 
in Fig. 5, is highly nonlinear. The decay of 
fi with & could roughly be described as 
“quasiexponential.” The variation of d be- 
tween the extreme values DO = 0.2514 and 
6, = 0.0120 as xb varies from 0 to 1 is very 
satisfactorily correlated in the form 

’ exp(o.991 - 0.14 xb 

- 2.257 it&,* + 1.411 xb3). (9) 

The numerical values of coefficients ap- 
pearing in (9) probably depend on the par- 
ticular value of b used. The general func- 
tional form (9), however, is believed to be 
characteristic of the changes in grid topol- 
ogy, brought about by bulk pore blocking. 

6. Border Blocking 

In this blocking mode, only pore en- 
trances, or surface sites, along the crystal 
border are blocked at random. (The maxi- 

mum number of blockings that can be intro- 
duced is thus 4(M + N).) Some examples of 
random blocking configurations generated 
in an 11 x 11 grid are given in Fig. 6. There 
are 121 nodes, of which 40 are surface 
nodes. 

Here, blocking a surface site A is seen as 
a closing of the entrance, or neck, of the 
intracrystalline pore ending at A, just below 
the surface of the crystal (Fig. 7). 

Transitions AC, CA from and to the inte- 
rior of the crystal are hindered (probability 
reduced to 6). 

The transition probability for staying at C 
is increased by a - b. 

The sorptive power of the blocked (or de- 
activated) site A is reduced. Once a particle 
reaches A, it will most likely (with probabil- 
ity 1 - 3b) desorb and escape to the exte- 
rior of the crystal at the next step. The 
probability of transitions AB and AD is re- 
duced to b. 

Transitions BA and DA, which bring a 
particle to the blocked site by surface diffu- 
sion, are not affected. 

In a border blocked grid, the particle can- 
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FIG. 6. Examples of random border blocking configurations in an I1 X 1 I network 
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not be altogether trapped until all pore en- 
trances have been blocked. Thus, the case 
b = 0.0 can be examined. Two sets of 
results are presented here, obtained with b 
= 0.0 and b = 0.01. 

The dependence of dimensionless diffu- 
sivity fi = D * r/l2 on the extent of border 
blocking, as determined for a grid with M = 
N = 10, for the two b values studied, is 
given in Fig. 8 as a pair of concave curves. 

The performance of fitting the retention 
probability vs number of steps relationship 
to compute values of d is shown in Fig. 9 
for three representative cases of slight, me- 
dium, and heavy border blocking. At low 
blocking percentages, the theoretical ex- 
pression (8) describes the “experimental” 
Pk’ relationship very satisfactorily. Fitting 
becomes worse, however, as the extent of 
blocking increases. This means that the 
continuum diffusion equation is no longer 
adequate for describing intracrystalline 
transport at high border blocking, and the 
concept of an effective diffusivity is less 
useful than in the case of bulk blocking, 
presented above. 

The behavior of the d&) curves ob- 

tained for the two values of b examined is 
quite similar. In the limit xb + 1.0, the “ex- 
perimental” d(&) curve obtained with b = 
0.0 correctly approaches the value d, = 
0.0. 

The nature of the &b) functionality, 
seen in Fig. 8, is strikingly different from 
that observed in the bulk blocking case 
(Fig. 4). The d(xb) curves are concave 
downward in the entire blocking range. 
Low extents of pore blocking are rather in- 
effective in reducing fi, but the drop in dif- 
fusivity becomes steeper and steeper as the 
degree of blocking increases. As long as 
there exist enough unblocked sites along 
the border, a molecule reaching them can 
migrate, by surface diffusion, to the non- 
sorbing blocked sites, and from there read- 
ily escape to the surroundings. This moder- 
ates the decrease in fi brought about by the 
fact that blocked surface sites are not im- 
mediately accessible from the interior of 
the crystal. As the extent of surface block- 
ing increases, the mechanism of escape via 
surface migration to a blocked site becomes 
less significant, hence the drop in d more 
pronounced. 
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FIG. 8. Effects of border blocking on diffusivity. 
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FIG. 9. Performance of fitting single particle random walk results in a border-blocked grid, by the 
theoretical expression (8). 

Satisfactory analytical correlations of the 
experimental results were arrived at by use 
of the reduced diffusivity drop (& - d)l(& 
- di). In the case b = 0.01, results are 
correlated by the expression 

LJ - d, 
= 0.00104 - 0.0950 xb 

+ 1.967 xb* - 2.517 xb3 + 1.641 xb4. (lo) 

In the case b = 0.0, experimental results 
are described by 

L& - d 
D,o - d, 

= 0.00160 - 0.1280 xb 

+ 2.079 xb - 3.078 xb3 + 2.116 Xb4. (11) 

It is seen that the values of coefficients ap- 
pearing in expressions (10) and (11) depend, 
to some extent, on b. However, the func- 
tional form expressed by (10) and (11) is 
quite similar, and is believed to be charac- 
teristic of the changes in grid topology 
brought about by border blocking. 

II. OCCUPANCY EFFECTS 

A stochastic model of diffusion and reac- 

tion in our simplified two-dimensional 
“crystal” was developed to study the ef- 
fects of intracrystalline occupancy by mo- 
bile, sorbed reactant and product molecules 
(instead of the immobile blocking modifier 
molecules of the previous section) on the 
degree of transport limitations imposed on 
the reaction. 

The reaction modeled is the simple isom- 
erization A = B in a crystal exposed to a 
bulk gaseous phase of pure A, where both 
the forward and the backward reactions are 
assumed to be first order, and the heat of 
reaction is assumed to be negligible. 

In the stochastic approach, molecular be- 
havior within the crystal is simulated by the 
Monte-Carlo method. A simulation experi- 
ment can be described as follows. 

We start with a completely empty grid, 
and “bombard” it, at a constant rate, with 
A molecules from the outside. A molecules 
attach themselves to the border of the grid; 
they diffuse, by a random walk process, to 
the interior, where the reaction A e B 
takes place at active sites, and ultimately 
exit the grid as A or B (converted) mole- 
cules. The number of molecules colliding 
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with, entering, reacting, present in, and ex- 
iting the grid is monitored at each step. It is 
evident that, by this technique, the situa- 
tion in the grid is transient at the beginning. 
As more and more molecules enter and 
exit, the occupancy of the crystal by mole- 
cules is stabilized at a roughly constant 
level, and a steady state is attained. Simula- 
tion is interrupted at a predetermined num- 
ber of steps Ns, after the system has oper- 
ated for a sufficient time in the steady state. 
Results presented here are based on aver- 
aging over the last Ns/2 steps of the simula- 
tion. The fundamental interval elapsing be- 
tween successive steps of the Monte-Carlo 
simulation is taken as equal to the diffusion 
step time of A, 7~. 

The following assumptions are made for 
particle entrance in the grid. 

(A.5) The number of gas molecules col- 
liding with the crystal border per time step 
is assumed to follow the Poisson distribu- 
tion, with a parameter (mean) of A colli- 
sions/step. It is by means of the value of A 
that occupancy in the crystal is indirectly 
controlled. 

(A.6) The spatial distribution of points of 
collision is uniform around the crystal bor- 
der. 

(A.7) A molecule is attached to the grid if 
the surface site on which it collides is unoc- 
cupied. Otherwise, it is deflected back into 
the gaseous phase. 

Pore intersections are considered to be 
the catalytic sites within the crystal. The 
conversion process is governed by the fol- 
lowing rules. 

(A.8) All sites are assumed to be of equal 
activity. At a catalytic site, an A molecule 
has a fixed probability p of being converted 
into B within the time duration of a simula- 
tion step. The corresponding probability for 
the conversion B * A in the interval TA is q. 

We symbolize by rd the ratio of zero-oc- 
cupancy diffusivities of species A and B: 

DA0 TB 
rd=O=-’ 

DB TA 

Movement of A and B molecules within 

the crystal channel system represented by 
the grid is modeled as a random walk pro- 
cess subject to assumptions (A.1) to (A.4). 
The presence of more than one molecules 
in the grid makes it necessary to introduce 
rules for particle interference during move- 
ment. As introduced here, these rules are 
independent of the identity of interfering 
particles, i.e., are the same for A-A, A-B, 
and B-B interactions. Interference be- 
tween molecules is of a “hard sphere” 
type, stemming solely from changes in grid 
topology due to their physical presence. 
More specifically, the following assump- 
tions are made. 

(A.9) No more than one molecule can oc- 
cupy a site at a given time. 

(AJO) Molecules move through the 
pores in single file. Two molecules cannot 
bypass each other moving in opposite di- 
rections within a pore. For a system such as 
xylenes/ZSM-5, this assumption seems rea- 
sonable in view of the relative magnitudes 
of pore and molecular diameters. 

(A.ZZ) Movement from a site S1 to a new 
site Sz, in a chosen direction Si --, Sz, oc- 
curs only if site Sz is unoccupied. If site S2 
is occupied, the molecule stays in place (at 
Sd. 

The sequencing and coordination of 
events used in the Monte-Carlo simulation 
is described in (21). 

The parameters of the Monte-Carlo 
model of diffusion and reaction are M, N, 
X, p, q, rd. All results presented here were 
obtained with values of M = 5, N = 5, p = 
0.008, q = 0.005, rd = 1.0. 

A continuum formulation of the problem, 
making use of the classical concepts of con- 
centrations CA, ca (based on total crystal 
volume), intrinsic reaction rate constants ki 
(for reaction A + B), kz (for reaction B ---f 
A), and effective diffusivities DA, DB, was 
developed in parallel with the stochastic ap- 
proach, for comparison purposes. 

Under the assumptions (AJO-A.12), ef- 
fective diffusivities, according to Riekert 
(I) are functions solely of the local occu- 
pancy, 
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CA + CB /j=--- 

CS 
(12) 

where cS is the saturation concentration Of 

the crystal: 

DA = DA0 ’ (1 - 6) 
(13) 

DB = DBO. (1 - e> 

In the continuum formulation, the crystal 
is viewed as a rectangular domain of dimen- 
sions L,, L,. The case L, = L, = 2L is con- 
sidered here (see Fig. 1). Due to symmetry, 
only the subdomain lying in the first quad- 
rant of the (x, y) system needs be consid- 
ered. The value of intracrystalline concen- 
tration of A along the crystal boundaries is 
specified as c,. 

The steady-state problem of reaction and 
diffusion can be cast into a dimensionless 
form, by use of the variables 

x=;, Y=$ 

= 

Let 0 denote the global occupancy in the 
crystal, 

(CA + c,) dxdy 
’ L2c s 

Let also Ci = 2. The effectiveness factor 

can be determined from the dimensionless 
profile C(X, y) as 

q= ()I; If 
CdXd Y. (14) 

In the special case of equal diffusivities, 
examined here (rd = l), occupancy is con- 
stant throughout the entire domain: 

0(X, y) = 0 = Ci (15) 

and the continuum problem assumes the 
simple linear form 

vc=2.+$.c 
I 

C(1, Y) = C(X, 1) = 1 (16) 

f * VC((O,y, = j * VCl(X.0, = 0 

where @ is the generalized Thiele modulus: 

@ = g ($ + $g*. (17) 

Thus, the dimensionless solution and, by 
(14), the effectiveness factor, is a function 
of the single parameter 

@ 
@’ = (1 - Ci)l/2 

which is an effective generalized Thiele 
modulus, modified for occupancy effects. 

An analytical solution of the problem (16) 
can be arrived at, following the method of 
Aris (22, p. 179). The result is 

C(X, Y) = 1 - (a’)* 

cos[(m - &rXl * cos[(n - &TUl 
4(@‘)2 + [(m - 2y + (n - g)*]?T* I (18) 

from which (14) 

7) = 1 - (@‘)2 

. @* j, 2 l(?m - 112: (2n - I)* 

1 
4(@‘)2 + (m - ;)*7r* + (n - f)*,rr* I * (19) 

A plot of the function r)(W), in the famil- 
iar logarithmic coordinates, is given in Fig. 
10. 

Under constant a’, the solution of (16) 
gives r) as a function of 0 = Ci, i.e., pro- 
vides a direct quantitative expression of the 
effects of occupancy on the degree of diffu- 
sional limitations. The function q(O) for a 
value of @ = 0.6841(= value corresponding 
to the Monte-Carlo simulation) is given in 
Fig. 11 (continuous line). 

One can establish a correspondence be- 
tween the parameters of the stochastic 
model, and those of the continuum ap- 
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REACTION L?G= 6 

Contfnuum Approach 
(onolytlcol sotut roll) 
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log effective generolised Thiele modulus, 4’ 

FIG. 10. Effectiveness factor 11 as a function of the effective generalized Thiele modulus W, accord- 
ing to the continuum approach. 

preach. The two-dimensional random walk In the stochastic model, global occu- 
process of A and B in the crystal grid is panty is determined, in a straightforward 
equivalent to a continuum diffusion process manner, from the “observables” of Monte- 
in an “extended” domain, of dimensions Carlo simulation, as 
2(N + l)l x 2(M + I)1 (see I) with 

N/j + Ng 

D2=& 
P 1 P @ = (2M + 1) . (2N + 1) (24) 

DBO=-=-.-. 
478 rd 47A 

(20) 
where N.+,, & denote the average number 

Intrinsic reaction rate constants can be of A, respectively B, molecules present in 
defined in terms of p, q, and rA as the crystal at steady state. 

k = ;, k2=$ 
Meaningful definitions of the effective- 

(21) ness factor in terms of the Monte-Carlo ob- 
servables can be arrived at by analogy to 

Thus, the generalized Thiele modulus the classical (continuum) reaction and dif- 
can be expressed in terms of the stochastic fusion theory. Three alternative definitions 
model parameters (21) as used in this work (20) are 

~ = 2 [M * N * (A4 + 1) * (N + 1)]“2 
M+N 

(p + rdq}“2. (22) 
a22. N~,ex 

For the parameter values used in the 
’ 

(25) 
Monte-Carlo simulation, @ is equal to r&A + + @NA - /i&x) 

0.6841. By the continuum formulation (Eq. 
(19)) this corresponds to a zero occupancy rd PNA - @B 

value of the effectiveness factor equal to 
7?3=7 - 

rdNA + NB 

T&O = 0.8062. CW where &,,, denotes the average number of 
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FIG. 11. Variation of effectiveness factor with global occupancy (comparison between 

REACTION A=B 

II Y II grid 

p= 0.008 

q=o.o05 
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@ = 0.684 I 
-O- Monte-Carlo 
- Continuum Soln 

0.35L I I I I I I I I I I\ I I 
0 01 02 03 04 05 0.6 07 08 0.9 IO 

occupancy, 0 

and continuum approaches). 

B molecules exiting the crystal per simula- 
tion step of duration $-A. 

Notice, that the definitions of ql, rj2, rj3 
are equivalent, as long as the fundamental 
steady-state balance 

N~,ex = PNA - @B 

is satisfied. 

(26) 

In practice, fluctuations in random num- 
ber generation lead to small differences be- 
tween the values of n,, n2, n3. Effectiveness 
factors presented in the following are aver- 
ages of the three values obtained from sim- 
ulation experiments by Eqs. (25). 

Some results, obtained by Monte-Carlo 
simulation of diffusion and reaction, for the 
abovementioned values of 44, N, p, q, rd, 
and A ranging from 0.1 to 1000, are pre- 
sented in Figs. 11 and 12. Bars denote stan- 
dard deviations, due to fluctuations inher- 
ent in the stochastic model. Figure 12 gives 
the number of A, B, and total molecules in 
the grid as a function of collision frequency. 
(For values of A > 200, all three curves be- 
come practically horizontal.) The func- 
tional relationship 0 = O(h), which can be 
directly obtained from the results of Fig. 

Carlo 

12, is an expression of the equilibrium 
“sorption isotherm” followed by our model 
zeolite. Analysis of the simulation results 
(21) shows that, up to occupancies of 80%, 
sorption conforms to a Langmuir isotherm, 
as can be predicted on the basis of model 
assumptions. 

Figure 11 shows the variation of effec- 
tiveness factor with intracrystalline occu- 
pancy according to the Monte-Carlo model 
(points and broken line), i.e., it is a quanti- 
tative expression of diffusional limitations 
due to molecule interference at high occu- 
pancies. Notice that the zero-occupancy 
limit value of r) determined by Monte-Carlo 
simulation agrees very well with the value 
(23) predicted by continuum theory. In gen- 
eral, Monte-Carlo and continuum results 
show good agreement in the region 0 < 
50%. As occupancy is further increased, 
Monte-Carlo values of n tend to be higher 
than continuum values determined by (19) 
for the same value of 0, i.e., the discrete 
model predicts a situation somewhat less 
diffusion limited than the continuum model. 

From the results of Monte-Carlo simula- 
tion it is evident that, at large values of h, a 
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FIG. 12. 
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Monte Carlo model: number of particles in grid as a function of collision frequency. 

“limiting,” or saturation situation is 
reached, at which phenomena occurring in 
the catalyst are not influenced by further 
increases in the collision frequency A. This 
is to be expected on the basis of the finite 
capacity of our crystal for molecules. What 
is, perhaps, the most striking result of the 
Monte-Carlo approach is that, in this “satu- 
ration” situation, the limiting occupancy 
attained in the grid is less than 100%. Under 
saturation conditions (h + CQ), 0 within a 
simulation step fluctuates between a mini- 
mum of 0.90 (directly after molecular es- 
cape) and a maximum of 0.97 (immediately 
after molecular attachment at the border). 
Close examination reveals that, even for A 
---, ~0, there exist unoccupied sites in the 
interior of the crystal (on the average 3.1 
internal unoccupied sites for an 11 x 11 
crystal). The existence of internal vacan- 
cies under saturation conditions can be un- 
derstood, if one considers the phenomenon 
of simultaneous movement of groups of two 
or more molecules, residing in adjacent 
rows on and parallel to the crystal border, 
toward the exterior of the crystal. Such 
“group migrations” occur with a finite 

probability in the stochastic model, and are 
obviously equivalent to migration of vacan- 
cies towards the interior of the crystal. 

Under saturation conditions, the effec- 
tiveness factor assumes a nonzero value of 
vcc = 0.51. 

The existence of a limiting situation at 
which 0, < 1 and r), > 0 evidently differen- 
tiates the Monte-Carlo from the continuum 
approach, according to which a situation of 
full occupancy, at which the effectiveness 
factor drops to zero, is attainable. 

The continuum and the stochastic ap- 
proaches developed here to examine occu- 
pancy effects rest on essentially the same 
assumptions. The lack of complete equiva- 
lence between them is rather due to differ- 
ences in the fundamental picture of the situ- 
ation employed by each model. 

In the continuum model, catalytic activ- 
ity is uniformly distributed over the whole 
crystal (domain) instead of residing at spe- 
cific sites. Notice, in particular, the differ- 
ence in the notion of “surface” between 
the two models. In the spatially and tempo- 
rally discrete stochastic model, the surface 
is a set of sites of finite catalytic activity, 
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which can sustain a reaction even in the 
case of extreme diffusion control, where in- 
coming molecules cannot penetrate at all 
into the crystal. In the continuum model, 
the surface is but a mathematical border- 
line. Conditions of extreme diffusion con- 
trol would cause the reactant gas to be con- 
fined to an infinitesimal strip of catalyst 
volume near the surface, of an accordingly 
infinitesimal catalytic activity, i.e., they 
would cause the reaction rate to drop to 
zero. 

With reference to the limiting occupancy 
situation predicted by the stochastic model, 
we note the following: 

The particular limiting values assumed 
by model parameters as A + x are func- 
tions of the grid size. In fact, the whole 
concept of a limiting steady state situation 
with 0, < 1 seems to be a result of the 
“finiteness” of the grid. As the crystal be- 
comes larger and larger (M + cc, N + x) 
the number of surface sites becomes insig- 
nificant in comparison with the total num- 
ber of sites, and the diffusion and reaction 
behavior at high occupancies is expected to 

move closer to the results of continuum 
theory. 

It is evident that, in the limit of high oc- 
cupancies, the situation becomes extremely 
sensitive to phenomena occurring at the 
surface of the crystal. Thus, any model at- 
tempting to account for high occupancy be- 
havior should incorporate sound and care- 
fully tested assumptions regarding the 
phenomena of sorption, surface diffusion, 
and reaction on surface borders. 

III. MONTE-CARLO INVESTIGATION OF 
BORDER-BLOCKING EFFECTS 

The Monte-Carlo model presented above 
was applied to the reaction and diffusion 
situation in a grid, in which a fraction of the 
surface sites has been randomly blocked. 
The objective was to study how the ob- 
served reaction rate and the degree of diffu- 
sional limitations vary with the extent of 
border blocking. 

There exist several interrelated factors, 
stemming from border blocking, which in- 
fluence the intracrystalline reaction and dif- 
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FIG. 13. Monte Carlo simulation of diffusion and reaction in a border blocked grid: observed reaction 
rate vs degree of border blocking. 
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fusion situation. One can classify them as 
follows: 

(i) Decrease in the rate of entrance of A 
particles from the gaseous phase into the 
crystal, due to unavailability of pore en- 
trances. 

(ii) Increase in the “tortuosity” of diffu- 
sion paths due to surface blocking (see I). 

(iii) Decrease in the intrinsic catalytic ac- 
tivity of the crystal, due to the fact that 
blocked sites do not act any more as cata- 
lytic sites (blocking is a form of poisoning). 

(iv) Decrease in occupancy 0 with in- 
creasing degree of blocking (this phenome- 
non is related to (i) and (ii)). 

We thus have a rather complex situation, 
for which no simple corresponding contin- 
uum formulation exists, and a stochastic 
approach is perfectly justified. 

Assumptions as to the effects of border 
blocking on molecular transport in the grid 
were identical to those used in (I). 

Results presented here were obtained 
from a series of simulation runs in an 11 X 
11 grid, keeping the collision frequency 
constant at A = 5 molecules/step, and vary- 

ing the number of blocked surface sites 
from Nb = 0 (xi, = 0.0) to Nb = 39 (xb = 
0.975). (This corresponds to studying the 
catalytic performance of a crystal under 
constant temperature and pressure, but at 
varying degrees of structural modification.) 

The rate of exit of B particles from the 
crystal grid (fis,J was chosen as a repre- 
sentative measure of the observed reaction 
rate. Figure 13 shows an approximately lin- 
ear decrease of reaction rate with border 
blocking, toward the value 0.0 at xb = 1.0. 

The experimental r)(&) functionality, as 
determined by Monte-Carlo, is shown in 
Fig. 14. Note that, with the value of A used, 
there already exist appreciable occupancy 
effects in the unblocked grid (0 = 0.32 at & 
= 0.0). In the region of low degrees of bor- 
der blocking, r] is seen to remain practically 
constant. Indeed, the effects of blocking on 
diffusivity are slight in this region (Fig. 8), 
whereas occupancy limitations gradually 
subside with increasing xb. The 7)(&) curve 
is concave downward, dropping smoothly 
toward the expected value of 71 = 0 at xb = 
1.00. 
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FIG. 14. Monte Carlo simulation of diffusion and reaction in a border blocked grid: 
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CONCLUSIONS D Effective intracrystalline 

Structural modifications of shape selec- 
diffusivity (m*/sec) 

fi Dimensionless effective dif- 
tive zeolite catalysts, thought to cause par- fusivity from random 
tial blocking of the intracrystalline pore 
system, bring about a decrease in the trans- 
port rate of sorbed species in the catalyst. kt 
The behavior of intracrystalline diffusivity k2 
is quite sensitive to the blocking mode 
used, being distinctly different in the two 1 
extreme cases of bulk blocking and border 
blocking. This could prove useful in resolv- 
ing questions related to the structure of sev- L 
era1 modified shape selective forms of zeo- 
lite catalysts used today. 

walk experiments. 
d = D. r/p 

Rate constant for reaction 
A + B (set-‘) 

Rate constant for reaction 
B -+ A (set-I) 

Distance between succes- 
sive pore intersections 
(sites) of crystal grid in 
stochastic approach (m) 

Half side length of the 
square domain represent- 
ing the crystal in contin- 
uum approach (m) 

Side lengths of the rectangu- 
lar domain representing 
the crystal in the contin- 
uum approach (m) 

Grid size parameter: number 
of nodes in the “vertical” 
direction is (2M + 1) 

Step number in random walk 
experiments 

Grid size parameter: number 
of nodes in the “horizon- 
tal” direction is (2N + 1) 

Number of blocked pores, 
or number of blocked sur- 
face sites 

Number of molecules of 
species j in the grid 

Number of molecules of 
species j exiting the crys- 
tal per step 

Number of Monte-Carlo 
simulation steps 

Probability of conversion 
A + B per site per sim- 
ulation step in Monte- 
Carlo approach 

Probability of being at site 
(i, j) at the nth random 
walk step 

Monte-Carlo simulation can be an effi- 
cient and self-consistent method for attack- 
ing problems of transport and reaction in 
microporous solids. Although lacking in 
“accuracy” and expensive in computing 
time, it is very flexible. Moreover, it can 
point out characteristics immediately re- 
lated to the “finiteness” of the intracrystal- 
line pore system and not predictable by al- 
ternative continuum approaches. In view of 
the complex, discrete topology of zeolite 
channel systems, stochastic modeling 
seems to be an approach particularly suit- 
able for understanding structure-selectiv- 
ity relationships in zeolite catalysis. 

NOMENCLATURE 

Probability of passing 
through a blocked pore 

Intracrystalline concentra- 
tion (kmol/m3 crystal) 

Dimensionless concentra- 
tion, used in continuum 
formulation 

Lx, L? 

M 

II 

N 

Nb 

4 

N ,.?I 

NS 

P 

p IA, 1.1 

‘Ai Value of intracrystalline ~),,~,p,.,‘-, p,.,“, P,,,~, P,,,~ Transition probabilities for 
concentration of A at the moving right, left, up, 
surface of the crystal down, and staying at the 
(kmol/m3 crystal) same place, respectively, 

Surface intracrystalline con- for site (i, j) 
centration, nondimen- Pi,'"' Probability of being in the 
sionalized with respect to grid at step n of random 
saturation concentration, walk 
c, = c&s 4 Probability of the conver- 

Saturation value of intra- sion B + A per site per 
crystalline concentration simulation step time in 
(kmol/m3 crystal) Monte-Carlo approach 
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rd 

x 

X 

f 
xb 

Y 

Greek Symbols 

8 
7) 
0 
0 
A 

Ratio of zero-occupancy dif- 
fusivity of species A to 
species B; rd = DAoID~O 

Time (set) 
“Horizontal” spatial coor- 

dinate in the plane of the 
grid (ml 

Dimensionless horizontal 
coordinate, X = xlL 

Unit vector in x-direction 
Fraction of blocked pores, 

or fraction of blocked sur- 
face sites 

“Vertical” spatial coordi- 
nate in the plane of the 
grid (m) 

Dimensionless vertical coor- 
dinate, Y = y/L 

Unit vector in y-direction 

Dirac delta function 
Effectiveness factor 
Local occupancy 
Global occupancy 
Mean frequency of molecu- 

lar collisions with crystal 
surface (molecules/step) 

Diffusion step time (set) 
Generalized Thiele modu- 

lus, defined in terms of 
crystal volume-to-exter- 
nal area ratio 

Generalized Thiele modu- 
lus, modified for occu- 
pancy effects 

Superscripts 

Mean value 
Zero occupancy 

Subscripts 

A 
B 
0 

m 

Species A 
Species B 
Zero blocking 
Full blocking 
Limiting condition A + m 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
9. 

10. 

Il. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 
19. 

20. 
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